Search results
Results from the WOW.Com Content Network
In 1975 Ed Long [1] in cooperation with Ronald J. Wickersham invented the first technique to Time-Align a loudspeaker systems. In 1976 Long presented "A Time-Align Technique for Loudspeakers System Design" [2] at the 54th AES convention demonstrating the use of the Time-Align generator to design improved crossover networks for multi-way loudspeakers systems.
In the diagram, a 60 Hz crossover frequency has been illustrated, but this can typically vary between 40 and 80 Hz. The LFE channel is a separate channel that contains low frequencies only, and it was originally added to magnetic 70mm-movie soundtracks in the 1970s, to be reproduced through subwoofers. [5]
An extra HPF section may be present in an "N-way" loudspeaker crossover to protect the lowest-frequency driver from frequencies lower than it can safely handle. Such a crossover would then have a bandpass filter for the lowest-frequency driver. Similarly, the highest-frequency driver may have a protective LPF section to prevent high-frequency ...
Bi-amping - An active crossover with two amplifiers.. Bi-amping and tri-amping is the practice of using two or three audio amplifiers respectively to amplify different audio frequency ranges, with the amplified signals being routed to different speaker drivers, such as woofers, subwoofers and tweeters.
The midwoofer-tweeter-midwoofer loudspeaker configuration (called MTM, for short) was a design arrangement from the late 1960s that suffered from serious lobing issues that prevented its popularity until it was perfected by Joseph D'Appolito as a way of correcting the inherent lobe tilting of a typical mid-tweeter (MT) configuration, at the crossover frequency, unless time-aligned. [1]
The Linn Isobarik DMS (with in-built crossover) in a domestic setting. The Linn Isobarik, nicknamed "Bariks" or "Briks", is a loudspeaker designed and manufactured by Linn Products. The Isobarik is known for both its reproduction of low bass frequencies and being very demanding on amplifiers.
Crossover frequency(ies) (multi-driver systems only) – The nominal frequency boundaries of the division between drivers. Frequency response – The measured, or specified, output over a specified range of frequencies for a constant input level varied across those frequencies. It sometimes includes a variance limit, such as within "± 2.5 dB."
This is achieved by splitting the desired frequency range into separate bands and employing separate drivers for each band of frequencies, and feeding them through a crossover filter network. Steep slope crossover filters are most effective at IMD reduction, but may be too expensive to implement using high-current components and may introduce ...