Search results
Results from the WOW.Com Content Network
An axial turbine has a similar construction as an axial compressor, but it operates in the reverse, converting flow of the fluid into rotating mechanical energy. A set of static guide vanes or nozzle vanes accelerates and adds swirl to the fluid and directs it to the next row of turbine blades mounted on a turbine rotor.
The difference between axial and radial turbines consists in the way the fluid flows through the components (compressor and turbine). Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly oriented perpendicular to the rotation axis, and it drives the turbine in the same way water ...
The radial component of the fluid velocity is negligible. Since there is no change in the direction of the fluid, several axial stages can be used to increase power output. A Kaplan turbine is an example of an axial flow turbine. In the figure: U = Blade velocity, V f = Flow velocity, V = Absolute velocity, V r = Relative velocity,
Radial flow turbines are mechanically robust compared to axial turbines and they are easy to configure. As a result of that they were considered for the application before axial turbine. They are more tolerant of overspeed and temporary temperature extremes. Radial flow turbines have higher energy extraction capability in one single stage.
A steam turbine with the case opened Humming of a small pneumatic turbine used in a German 1940s-vintage safety lamp. A turbine (/ ˈ t ɜːr b aɪ n / or / ˈ t ɜːr b ɪ n /) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) [1] [2] is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work.
From an energy exchange point of view axial compressors are reversed turbines. Steam-turbine designer Charles Algernon Parsons, for example, recognized that a turbine which produced work by virtue of a fluid's static pressure (i.e. a reaction turbine) could have its action reversed to act as an air compressor, calling it a turbo compressor or pump.
These understandings apply to all dynamic, continuous-flow, axisymmetric pumps, fans, blowers, and compressors in axial, mixed-flow and radial/centrifugal configurations. This relationship is the reason advances in turbines and axial compressors often find their way into other turbomachinery including centrifugal compressors.
In the axial compressor the air flows parallel to the axis of rotation. Axial compressors are made to be multi-staged. A stage consists of a row of rotating blades called the rotor, which are connected to the central shaft and a row of stationary or fixed blades called stator. In axial flow compressor, the air flows from stage to stage.