Search results
Results from the WOW.Com Content Network
Oxidative phosphorylation – The last stage of the aerobic system produces the largest yield of ATP – a total of 34 ATP molecules. It is called oxidative phosphorylation because oxygen is the final acceptor of electrons and hydrogen ions (hence oxidative) and an extra phosphate is added to ADP to form ATP (hence phosphorylation).
Oxidative phosphorylation (UK / ɒ k ˈ s ɪ d. ə. t ɪ v /, US / ˈ ɑː k. s ɪ ˌ d eɪ. t ɪ v / [1]) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).
A cost of 1 ATP is associated with conversion to 3-phosphoglycerate (PGA) (Phosphorylation), within the chloroplast, which is then free to re-enter the Calvin cycle. Several costs are associated with this metabolic pathway; the production of hydrogen peroxide in the peroxisome (associated with the conversion of glycolate to glyoxylate).
is, in essence, the same as the electron transport chain in chloroplasts. The mobile water-soluble electron carrier is cytochrome c 6 in cyanobacteria, having been replaced by plastocyanin in plants. [8] Cyanobacteria can also synthesize ATP by oxidative phosphorylation, in the manner of other bacteria. The electron transport chain is
This equation is a summary of what happens in three series of biochemical reactions: glycolysis, the Krebs cycle (also known as the Citric acid cycle), and oxidative phosphorylation. C 6 H 12 O 6 + 6 O 2 + 38 ADP + 38 phosphate → 6 CO 2 + 44 H 2 O + 38 ATP. In Oxidative phosphorylation, ATP is synthesized from ADP and a phosphate using ATP ...
[4]: 91–93 The net reaction is, therefore, thermodynamically favorable, for it results in a lower free energy for the final products. [ 10 ] : 578–579 A catabolic pathway is an exergonic system that produces chemical energy in the form of ATP, GTP, NADH, NADPH, FADH2, etc. from energy containing sources such as carbohydrates, fats, and ...
In the standard ED, phosphorylation occurs at the first step from glucose to G-6-P. In spED, the glucose is first oxidized to gluconate via a glucose dehydrogenase. Next, gluconate dehydratase converts gluconate into 2-keto-3-deoxy-gluconate (KDG). The next step is where phosphorylation occurs as KDG kinase converts KDG into KDPG.
The overall process of creating energy in this fashion is termed oxidative phosphorylation. The same process takes place in the mitochondria, where ATP synthase is located in the inner mitochondrial membrane and the F 1-part projects into the mitochondrial matrix. By pumping proton cations into the matrix, the ATP-synthase converts ADP into ATP.