enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logical conjunction - Wikipedia

    en.wikipedia.org/wiki/Logical_conjunction

    In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as ∧ {\displaystyle \wedge } [ 1 ] or & {\displaystyle \&} or K {\displaystyle K} (prefix) or × {\displaystyle \times } or ⋅ {\displaystyle \cdot } [ 2 ] in ...

  3. Logical connective - Wikipedia

    en.wikipedia.org/wiki/Logical_connective

    Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.

  4. Conjunction elimination - Wikipedia

    en.wikipedia.org/wiki/Conjunction_elimination

    In propositional logic, conjunction elimination (also called and elimination, ∧ elimination, [1] or simplification) [2] [3] [4] is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.

  5. Disjunctive syllogism - Wikipedia

    en.wikipedia.org/wiki/Disjunctive_syllogism

    In classical logic, disjunctive syllogism [1] [2] (historically known as modus tollendo ponens (MTP), [3] Latin for "mode that affirms by denying") [4] is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

  6. Conjunction introduction - Wikipedia

    en.wikipedia.org/wiki/Conjunction_introduction

    Conjunction introduction (often abbreviated simply as conjunction and also called and introduction or adjunction) [1] [2] [3] is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof .

  7. Commutativity of conjunction - Wikipedia

    en.wikipedia.org/wiki/Commutativity_of_conjunction

    In propositional logic, the commutativity of conjunction is a valid argument form and truth-functional tautology. It is considered to be a law of classical logic . It is the principle that the conjuncts of a logical conjunction may switch places with each other, while preserving the truth-value of the resulting proposition.

  8. Logical disjunction - Wikipedia

    en.wikipedia.org/wiki/Logical_disjunction

    The role of disjunction in these cases has been analyzed using nonclassical logics such as alternative semantics and inquisitive semantics, which have also been adopted to explain the free choice and simplification inferences. [1] In English, as in many other languages, disjunction is expressed by a coordinating conjunction.

  9. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.