enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...

  3. Squeeze theorem - Wikipedia

    en.wikipedia.org/wiki/Squeeze_theorem

    ⁡ for x close enough to 0. This can be derived by replacing sin x in the earlier fact by ⁡ and squaring the resulting inequality. These two limits are used in proofs of the fact that the derivative of the sine function is the cosine function.

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Using the squeeze theorem, [4] we can prove that ⁡ =, which is a formal restatement of the approximation ⁡ for small values of θ.. A more careful application of the squeeze theorem proves that ⁡ =, from which we conclude that ⁡ for small values of θ.

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.

  7. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    In either case, the value at x = 0 is defined to be the limiting value ⁡:= ⁡ = for all real a ≠ 0 (the limit can be proven using the squeeze theorem). The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of π ).

  8. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  9. Wallis product - Wikipedia

    en.wikipedia.org/wiki/Wallis_product

    While the proof above is typically featured in modern calculus textbooks, the Wallis product is, in retrospect, an easy corollary of the later Euler infinite product for the sine function. sinx x = ∏ n = 1 ∞ ( 1 − x 2 n 2 π 2 ) {\displaystyle {\frac {\sin x}{x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)}