Search results
Results from the WOW.Com Content Network
In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ((+)) for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.
There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
It is an even function, and real analytic for real values. It follows from the fact that the Riemann–Siegel theta function and the Riemann zeta function are both holomorphic in the critical strip, where the imaginary part of t is between −1/2 and 1/2, that the
where Hardy's Z function and the Riemann–Siegel theta function θ are uniquely defined by this and the condition that they are smooth real functions with θ(0) = 0. By finding many intervals where the function Z changes sign one can show that there are many zeros on the critical line.
Riemann function may refer to one of the several functions named after the mathematician Bernhard Riemann, including: Riemann zeta function; Thomae's function, also called the Riemann function; Riemann theta function, Riemann's R, an approximation of the prime-counting function π(x), see Prime-counting function#Exact form. Almost nowhere ...
The method of Eratosthenes used to sieve out prime numbers is employed in this proof.. This sketch of a proof makes use of simple algebra only. This was the method by which Euler originally discovered the formula.
The main point of Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions , or the logarithm .