Search results
Results from the WOW.Com Content Network
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
The traditional ld (Unix linker) requires that its library inputs be sorted in topological order, since it processes files in a single pass. This applies both to static libraries ( *.a ) and dynamic libraries ( *.so ), and in the case of static libraries preferably for the individual object files contained within.
The left and right order topologies can be used to give counterexamples in general topology. For example, the left or right order topology on a bounded set provides an example of a compact space that is not Hausdorff. The left order topology is the standard topology used for many set-theoretic purposes on a Boolean algebra. [clarification needed]
A standard scenario in many computer applications is a collection of points (measurements, dark pixels in a bit map, etc.) in which one wishes to find a topological feature. Homology can serve as a qualitative tool to search for such a feature, since it is readily computable from combinatorial data such as a simplicial complex.
Therefore, the order in which the strongly connected components are identified constitutes a reverse topological sort of the DAG formed by the strongly connected components. [7] Donald Knuth described Tarjan's SCC algorithm as one of his favorite implementations in the book The Stanford GraphBase. [8] He also wrote: [9]
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
For a graph with n vertices, m edges, and r edges in the transitive reduction, it is possible to find the transitive reduction using an output-sensitive algorithm in an amount of time that depends on r in place of m. The algorithm is: [6] For each vertex v, in the reverse of a topological order of the input graph:
In the field of computer science, a pre-topological order or pre-topological ordering of a directed graph is a linear ordering of its vertices such that if there is a directed path from vertex u to vertex v and v comes before u in the ordering, then there is also a directed path from vertex v to vertex u. [1] [2]