enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    set is smaller than its power set; uncountability of the real numbers; Cantor's first uncountability proof. uncountability of the real numbers; Combinatorics; Combinatory logic; Co-NP; Coset; Countable. countability of a subset of a countable set (to do) Angle of parallelism; Galois group. Fundamental theorem of Galois theory (to do) Gödel number

  3. Baker–Campbell–Hausdorff formula - Wikipedia

    en.wikipedia.org/wiki/Baker–Campbell...

    (The reader is invited, for example, to verify by direct computation that is expressible as a linear combination of the two nontrivial third-order commutators of and , namely [, [,]] and [, [,]].) The general result that each z j {\displaystyle z_{j}} is expressible as a combination of commutators was shown in an elegant, recursive way by Eichler.

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Linear congruence theorem (number theory, modular arithmetic) Linear speedup theorem (computational complexity theory) Linnik's theorem (number theory) Lions–Lax–Milgram theorem (partial differential equations) Liouville's theorem (complex analysis, entire functions) Liouville's theorem (conformal mappings) Liouville's theorem (Hamiltonian ...

  5. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    It is an important proof technique in set theory, topology and other fields. Proofs by transfinite induction typically distinguish three cases: when n is a minimal element, i.e. there is no element smaller than n; when n has a direct predecessor, i.e. the set of elements which are smaller than n has a largest element;

  6. Curry–Howard correspondence - Wikipedia

    en.wikipedia.org/wiki/Curry–Howard_correspondence

    As an example, consider a proof of the theorem α → α. In lambda calculus, this is the type of the identity function I = λx.x and in combinatory logic, the identity function is obtained by applying S = λfgx.fx(gx) twice to K = λxy.x. That is, I = ((S K) K). As a description of a proof, this says that the following steps can be used to ...

  7. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    The hockey stick identity confirms, for example: for n=6, r=2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then

  8. Proofs That Really Count - Wikipedia

    en.wikipedia.org/wiki/Proofs_That_Really_Count

    Proofs That Really Count: the Art of Combinatorial Proof is an undergraduate-level mathematics book on combinatorial proofs of mathematical identies.That is, it concerns equations between two integer-valued formulas, shown to be equal either by showing that both sides of the equation count the same type of mathematical objects, or by finding a one-to-one correspondence between the different ...

  9. Back-and-forth method - Wikipedia

    en.wikipedia.org/wiki/Back-and-forth_method

    As an example, the back-and-forth method can be used to prove Cantor's isomorphism theorem, although this was not Georg Cantor's original proof. This theorem states that two unbounded countable dense linear orders are isomorphic. [1] Suppose that (A, ≤ A) and (B, ≤ B) are linearly ordered sets;