Search results
Results from the WOW.Com Content Network
RATS: robusterrors option is available in many of the regression and optimization commands (linreg, nlls, etc.). Stata: robust option applicable in many pseudo-likelihood based procedures. [19] Gretl: the option --robust to several estimation commands (such as ols) in the context of a cross-sectional dataset produces robust standard errors. [20]
The forerunner of RATS was a FORTRAN program called SPECTRE, written by economist Christopher A. Sims. [2] SPECTRE was designed to overcome some limitations of existing software that affected Sims' research in the 1970s, by providing spectral analysis and also the ability to run long unrestricted distributed lags. [3]
[4] A similar assessment can be also carried out with the Durbin–Watson test and the Ljung–Box test . However, the test is more general than that using the Durbin–Watson statistic (or Durbin's h statistic), which is only valid for nonstochastic regressors and for testing the possibility of a first-order autoregressive model (e.g. AR(1 ...
For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram . The correlogram is a commonly used tool for checking randomness in a data set .
MicrOsiris automatically assigns 1.5 or 1.6 billion to blanks as missing, and these values are excluded from analysis. [52] Other packages need a 'placeholder', such as '-9' where there are missing data. [53] Before the package is used to read the data, the data set has to be edited to put in a placeholder where there are missing data. So for ...
The instrument must be correlated with the endogenous explanatory variables, conditionally on the other covariates. If this correlation is strong, then the instrument is said to have a strong first stage. A weak correlation may provide misleading inferences about parameter estimates and standard errors. [3] [4]
The transformation suggested by Cochrane and Orcutt disregards the first observation of a time series, causing a loss of efficiency that can be substantial in small samples. [3]
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.