Search results
Results from the WOW.Com Content Network
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
The word problem was one of the first examples of an unsolvable problem to be found not in mathematical logic or the theory of algorithms, but in one of the central branches of classical mathematics, algebra. As a result of its unsolvability, several other problems in combinatorial group theory have been shown to be unsolvable as well.
Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...
This operation is known as reduction, and it does not change the group element represented by the word. Reductions can be thought of as relations (defined below) that follow from the group axioms. A reduced word is a word that contains no redundant pairs. Any word can be simplified to a reduced word by performing a sequence of reductions:
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...
In case there are several permutations with this property, let σ denote one with the highest number of integers from {, …,} satisfying = (). We will now prove by contradiction , that σ {\displaystyle \sigma } has to keep the order of y 1 , … , y n {\displaystyle y_{1},\ldots ,y_{n}} (then we are done with the upper bound in ( 1 ), because ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us