Ad
related to: hexagonal beam
Search results
Results from the WOW.Com Content Network
A hexbeam, or hexagonal-beam, is a type of a directional antenna for shortwave, most often used in amateur radio. The name comes from the hexagonal outer shape of the antenna. It may also sometimes be known as a W-antenna, referring to the shape of the driver. The design looks something like an upturned umbrella.
Cellular beam is a further development of the traditional castellated beam. [1] The advantage of the steel beam castellation process is that it increases strength without adding weight, making both versions an inexpensive solution to achieve maximum structural load capacity in building construction .
The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1] [2] [3] early in the 20th century.
All three beams were compared to a cast cement paste reference beam (i.e. no polymer layers or hexagonal markings at all). The resulting experiments proved that, ...
The shape of the honeycomb cell is often varied to meet different engineering applications. Shapes that are commonly used besides the regular hexagonal cell include triangular cells, square cells, and circular-cored hexagonal cells, and circular-cored square cells. [32] The relative densities of these cells will depend on their new geometry.
Consider the scattering of a beam of wavelength by an assembly of particles or atoms stationary at positions , =, …,.Assume that the scattering is weak, so that the amplitude of the incident beam is constant throughout the sample volume (Born approximation), and absorption, refraction and multiple scattering can be neglected (kinematic diffraction).
The equations below assume a beam with a circular cross-section at all values of z; this can be seen by noting that a single transverse dimension, r, appears.Beams with elliptical cross-sections, or with waists at different positions in z for the two transverse dimensions (astigmatic beams) can also be described as Gaussian beams, but with distinct values of w 0 and of the z = 0 location for ...
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line.
Ad
related to: hexagonal beam