Search results
Results from the WOW.Com Content Network
Haloalkanes behave as the R + synthon, and readily react with nucleophiles. [citation needed] Hydrolysis, a reaction in which water breaks a bond, is a good example of the nucleophilic nature of haloalkanes. The polar bond attracts a hydroxide ion, OH − (NaOH (aq) being a common source of this ion).
As a primary haloalkane, it is prone to S N 2 type reactions. It is commonly used as an alkylating agent. When combined with magnesium metal in dry ether, it gives the corresponding Grignard reagent. Such reagents are used to attach butyl groups to various substrates. 1-Bromobutane is the precursor to n-butyllithium: [4]
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.
Hydrolysis (/ h aɪ ˈ d r ɒ l ɪ s ɪ s /; from Ancient Greek hydro- 'water' and lysis 'to unbind') is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. [1]
Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.
For example, OH − is a better nucleophile than water, and I − is a better nucleophile than Br − (in polar protic solvents). In a polar aprotic solvent, nucleophilicity increases up a column of the periodic table as there is no hydrogen bonding between the solvent and nucleophile; in this case nucleophilicity mirrors basicity.
Called the "I Turn Polar Bears White" riddle, it presents a series of cryptic statements that don't seem to make sense at first glance. Take a closer look at this perplexing puzzle and see if you ...
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.