enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frobenius solution to the hypergeometric equation - Wikipedia

    en.wikipedia.org/wiki/Frobenius_solution_to_the...

    Since z = 1 − x, the solution of the hypergeometric equation at x = 1 is the same as the solution for this equation at z = 0. But the solution at z = 0 is identical to the solution we obtained for the point x = 0, if we replace each γ by α + β − γ + 1. Hence, to get the solutions, we just make this substitution in the previous results.

  3. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a ...

  4. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    In either case the full quartic can then be divided by the factor (x − 1) or (x + 1) respectively yielding a new cubic polynomial, which can be solved to find the quartic's other roots. If a 1 = a 0 k , {\displaystyle \ a_{1}=a_{0}k\ ,} a 2 = 0 {\displaystyle \ a_{2}=0\ } and a 4 = a 3 k , {\displaystyle \ a_{4}=a_{3}k\ ,} then x = − k ...

  5. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    Although graph searching methods such as a breadth-first search would find a route if given enough time, other methods, which "explore" the graph, would tend to reach the destination sooner. An analogy would be a person walking across a room; rather than examining every possible route in advance, the person would generally walk in the direction ...

  6. Transcendental equation - Wikipedia

    en.wikipedia.org/wiki/Transcendental_equation

    Graphical solution of sin(x)=ln(x) Approximate numerical solutions to transcendental equations can be found using numerical, analytical approximations, or graphical methods. Numerical methods for solving arbitrary equations are called root-finding algorithms. In some cases, the equation can be well approximated using Taylor series near the zero.

  7. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

  8. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  9. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5] Monochromatic triangle [3]: GT6 Pathwidth, [6] or, equivalently, interval thickness, and vertex separation number [7] Rank coloring; k-Chinese postman