Search results
Results from the WOW.Com Content Network
G-quadruplex structures can be computationally predicted from DNA or RNA sequence motifs, [11] [12] but their actual structures can be quite varied within and between the motifs, which can number over 100,000 per genome. Their activities in basic genetic processes are an active area of research in telomere, gene regulation, and functional ...
The Swiss-model Workspace integrates programs and databases required for protein structure prediction and modelling in a web-based workspace. Depending on the complexity of the modelling task, different modes of use can be applied, in which the user has different levels of control over individual modelling steps: automated mode, alignment mode, and project mode.
With full-genome sequences available, structure prediction can be done more quickly through a combination of experimental and modeling approaches, especially because the availability of large number of sequenced genomes and previously solved protein structures allows scientists to model protein structure on the structures of previously solved ...
The protein structure prediction remains an extremely difficult and unresolved undertaking. The two main problems are the calculation of protein free energy and finding the global minimum of this energy. A protein structure prediction method must explore the space of possible protein structures which is astronomically large.
Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure. This list of protein structure prediction software summarizes notable used software tools in protein structure prediction, including homology modeling, protein threading, ab initio methods, secondary structure prediction, and transmembrane helix and signal peptide prediction.
Three-dimensional structure of a protein. Structural bioinformatics is the branch of bioinformatics that is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA. It deals with generalizations about macromolecular 3D structures such as comparisons of overall folds ...
Name Description Knots [Note 1]Links References trRosettaRNA: trRosettaRNA is an algorithm for automated prediction of RNA 3D structure. It builds the RNA structure by Rosetta energy minimization, with deep learning restraints from a transformer network (RNAformer). trRosettaRNA has been validated in blind tests, including CASP15 and RNA-Puzzles, which suggests that the automated predictions ...
RaptorX is the successor to the RAPTOR protein structure prediction system. RAPTOR was designed and developed by Dr. Jinbo Xu and Dr. Ming Li at the University of Waterloo. RaptorX was designed and developed by a research group led by Prof. Jinbo Xu at the Toyota Technological Institute branch at Chicago.