Search results
Results from the WOW.Com Content Network
A common type of lattice graph (known under different names, such as grid graph or square grid graph) is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 1, ..., n, y-coordinates being in the range 1, ..., m, and two vertices being connected by an edge whenever the corresponding points are at distance 1.
Another generalization is to calculate the number of coprime integer solutions , to the inequality m 2 + n 2 ≤ r 2 . {\displaystyle m^{2}+n^{2}\leq r^{2}.\,} This problem is known as the primitive circle problem , as it involves searching for primitive solutions to the original circle problem. [ 9 ]
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
If the grid size h = 1, the result is the negative discrete Laplacian on the graph, which is the square lattice grid. There are no constraints here on the values of the function f ( x , y ) on the boundary of the lattice grid, thus this is the case of no source at the boundary, that is, a no-flux boundary condition (aka, insulation, or ...
In mathematics, the n-dimensional integer lattice (or cubic lattice), denoted , is the lattice in the Euclidean space whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice , or grid lattice.
In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, [1] in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like a honeycomb), and each circle is surrounded by six other circles.
The function can be calculated in three dimensions by dividing the space into a regular lattice grid. With each edge is associated a random value, indicating a rotational component of material revolving around the edge. By following rotating material into and out of faces, one can quickly sum the flux passing through each face of the lattice.
Lattice, or sieve, multiplication is algorithmically equivalent to long multiplication. It requires the preparation of a lattice (a grid drawn on paper) which guides the calculation and separates all the multiplications from the additions. It was introduced to Europe in 1202 in Fibonacci's Liber Abaci. Fibonacci described the operation as ...