Search results
Results from the WOW.Com Content Network
Alanine is the simplest α-amino acid after glycine. The methyl side-chain of alanine is non-reactive and is therefore hardly ever directly involved in protein function. [12] Alanine is a nonessential amino acid, meaning it can be manufactured by the human body, and does not need to be obtained through the diet. Alanine is found in a wide ...
Structure of a typical L-alpha-amino acid in the "neutral" form. Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. [1] Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. [2]
β-Alanine (beta-alanine) is a naturally occurring beta amino acid, which is an amino acid in which the amino group is attached to the β-carbon (i.e. the carbon two carbon atoms away from the carboxylate group) instead of the more usual α-carbon for alanine (α-alanine). The IUPAC name for β-alanine is 3-aminopropanoic acid.
This chemical similarity can be exploited in cancer, where a protein may mutate into an "always on" (constitutively active) state. A mutation may occur to replace a tyrosine (which needs to be phosphorylated in order to activate the protein) with an aspartic acid (which would not need to be phosphorylated).
The alpha helix is also commonly called a: Pauling–Corey–Branson α-helix (from the names of three scientists who described its structure); 3.6 13-helix because there are 3.6 amino acids in one ring, with 13 atoms being involved in the ring formed by the hydrogen bond (starting with amidic hydrogen and ending with carbonyl oxygen)
The Alanine World Hypothesis postulates that the evolution of the genetic code (the so-called GC phase [87]) started with only four basic amino acids: alanine, glycine, proline and ornithine (now arginine). [88] The evolution of the genetic code ended with 20 proteinogenic amino acids.
Only proline differs from this basic structure as its side chain is cyclical, bonding to the amino group, limiting protein chain flexibility. [34] The side chains of the standard amino acids have a variety of chemical structures and properties, and it is the combined effect of all amino acids that determines its three-dimensional structure and ...
The Cahill cycle, also known as the alanine cycle or glucose-alanine cycle, [1] is the series of reactions in which amino groups and carbons from muscle are transported to the liver. [2] It is quite similar to the Cori cycle in the cycling of nutrients between skeletal muscle and the liver. [ 1 ]