Search results
Results from the WOW.Com Content Network
In general, viral infections are systemic. This means they involve many different parts of the body or more than one body system at the same time; i.e. a runny nose, sinus congestion, cough, body aches etc. They can be local at times as in viral conjunctivitis or "pink eye" and herpes. Only a few viral infections are painful, like herpes. The ...
Other cells of the body do not function as agents of heredity. The effect is one-way: germ cells produce somatic cells, and more germ cells; the germ cells are not affected by anything the somatic cells learn or any ability the body acquires during its life. Genetic information cannot pass from soma to germ plasm and on to the next generation.
Germplasm resources allow for more genetic assets to be used and integrated for agricultural systems for plant breeding and bringing about new varieties. In addition, researchers are looking at crop wild relatives (CWRs) that could expand gene pools of crop species and provide more ability to select target traits.
Viral entry is the earliest stage of infection in the viral life cycle, as the virus comes into contact with the host cell and introduces viral material into the cell. The major steps involved in viral entry are shown below. [1] Despite the variation among viruses, there are several shared generalities concerning viral entry. [2]
A germ cell is any cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they undergo meiosis, followed by cellular differentiation into mature gametes, either eggs or sperm.
The immune system is involved in many aspects of physiological regulation in the body. The immune system interacts intimately with other systems, such as the endocrine [83] [84] and the nervous [85] [86] [87] systems. The immune system also plays a crucial role in embryogenesis (development of the embryo), as well as in tissue repair and ...
Virulence involves pathogens extracting host nutrients for their survival, evading host immune systems by producing microbial toxins and causing immunosuppression. Optimal virulence describes a theorized equilibrium between a pathogen spreading to additional hosts to parasitize resources, while lowering their virulence to keep hosts living for ...
Graphic depicting the human skin microbiota, with relative prevalences of various classes of bacteria. The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, [1] [2] including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung ...