enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    In the mathematical field of graph theory, the Laplacian matrix, ... The Laplacian is an operator on the n-dimensional vector ... Graph Signal Processing in Python [12]

  3. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The vector Laplace operator, also denoted by , is a differential operator defined over a vector field. [7] The vector Laplacian is similar to the scalar Laplacian; whereas the scalar Laplacian applies to a scalar field and returns a scalar quantity, the vector Laplacian applies to a vector field , returning a vector quantity.

  4. Laplacian vector field - Wikipedia

    en.wikipedia.org/wiki/Laplacian_vector_field

    The Laplacian vector field theory is being used in research in mathematics and medicine. Math researchers study the boundary values for Laplacian vector fields and investigate an innovative approach where they assume the surface is fractal and then must utilize methods for calculating a well-defined integration over the boundary. [5]

  5. Nine-point stencil - Wikipedia

    en.wikipedia.org/wiki/Nine-point_stencil

    Or, for different anisotropic effects using the same vector field [14] θ = arctan ⁡ ( V y / − V x ) {\displaystyle \theta =\arctan(V_{y}/-V_{x})} It is important to note that, regardless of the values of θ {\displaystyle \theta } , the anisotropic propagation will occur parallel to the secondary direction c2 and perpendicular to the ...

  6. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    For any twice-differentiable real-valued function f defined on Euclidean space R n, the Laplace operator (also known as the Laplacian) takes f to the divergence of its gradient vector field, which is the sum of the n pure second derivatives of f with respect to each vector of an orthonormal basis for R n.

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  8. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

  9. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.