Search results
Results from the WOW.Com Content Network
The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge. The semi ...
In geometry and linear algebra, a principal axis is a certain line in a Euclidean space associated with a ellipsoid or hyperboloid, generalizing the major and minor axes of an ellipse or hyperbola. The principal axis theorem states that the principal axes are perpendicular , and gives a constructive procedure for finding them.
The line through the foci is called the major axis, and the line perpendicular to it through the center is the minor axis. The major axis intersects the ellipse at two vertices V 1 , V 2 {\displaystyle V_{1},V_{2}} , which have distance a {\displaystyle a} to the center.
The limit of a pencil of ellipses sharing the same center and axes and passing through a given point degenerates to a pair of lines parallel with the major axis as the two foci are moved to infinity in opposite directions. Likewise the limit of an analogous pencil of hyperbolas degenerates to a pair of lines perpendicular to the major axis.
By the principal axis theorem, the two eigenvectors of the matrix of the quadratic form of a central conic section (ellipse or hyperbola) are perpendicular (orthogonal to each other) and each is parallel to (in the same direction as) either the major or minor axis of the conic.
For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...
Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2 , with radius r = a = b . For the parabola, the standard form has the focus on the x -axis at the point ( a , 0) and the directrix the line with equation x = − a .
In elliptic geometry, two lines perpendicular to a given line must intersect. In fact, all perpendiculars to a given line intersect at a single point called the absolute pole of that line. Every point corresponds to an absolute polar line of which it is the absolute pole.