enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.

  3. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain, or ...

  4. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    The second stage is the strain hardening region. This region starts as the stress goes beyond the yielding point, reaching a maximum at the ultimate strength point, which is the maximal stress that can be sustained and is called the ultimate tensile strength (UTS). In this region, the stress mainly increases as the material elongates, except ...

  5. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture). During strain hardening the material becomes stronger through the movement of atomic dislocations. The necking phase is indicated by a reduction in cross-sectional area of the specimen.

  6. Necking (engineering) - Wikipedia

    en.wikipedia.org/wiki/Necking_(engineering)

    The amount of strain in the stable neck is called the natural draw ratio [6] because it is determined by the material's hardening characteristics, not the amount of drawing imposed on the material. Ductile polymers often exhibit stable necks because molecular orientation provides a mechanism for hardening that predominates at large strains. [7]

  7. Environmental stress cracking - Wikipedia

    en.wikipedia.org/wiki/Environmental_stress_cracking

    The strain hardening modulus is calculated over the entire strain hardening region in the true stress strain curve. The strain hardening region of the stress-strain curve is considered to be the homogeneously deforming part well above the natural draw ratio, which is determined by presence of the neck propagation, and below the maximum ...

  8. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.

  9. Flow plasticity theory - Wikipedia

    en.wikipedia.org/wiki/Flow_plasticity_theory

    The strain can be decomposed into a recoverable elastic strain and an inelastic strain (). The stress at initial yield is σ 0 {\displaystyle \sigma _{0}} . For strain hardening materials (as shown in the figure) the yield stress increases with increasing plastic deformation to a value of σ y {\displaystyle \sigma _{y}} .