Search results
Results from the WOW.Com Content Network
The localization of a commutative ring R by a multiplicatively closed set S is a new ring whose elements are fractions with numerators in R and denominators in S.. If the ring is an integral domain the construction generalizes and follows closely that of the field of fractions, and, in particular, that of the rational numbers as the field of fractions of the integers.
Such a ring is necessarily a reduced ring, [5] and this is sometimes included in the definition. In general, if A is a Noetherian ring whose localizations at maximal ideals are all domains, then A is a finite product of domains. [6] In particular if A is a Noetherian, normal ring, then the domains in the product are integrally closed domains. [7]
If K were indeed the function field of an algebraic variety V, then for each point P of V we could try to define a valuation ring R of functions "defined at" P. In cases where V has dimension 2 or more there is a difficulty that is seen this way: if F and G are rational functions on V with F(P) = G(P) = 0, the function F/G. is an indeterminate ...
Just as the polynomial ring in n variables with coefficients in the commutative ring R is the free commutative R-algebra of rank n, the noncommutative polynomial ring in n variables with coefficients in the commutative ring R is the free associative, unital R-algebra on n generators, which is noncommutative when n > 1.
This ring can also be described as the coordinate ring of the cuspidal cubic curve y 2 = x 3 over K. The subring K[t 3, t 4, t 5] of the polynomial ring K[t], or its localization or completion at t=0, is a 1-dimensional domain which is Cohen–Macaulay but not Gorenstein. Rational singularities over a field of characteristic zero are Cohen ...
Let R be a ring that is graded by the ordered semigroup of non-negative integers, and let + denote the ideal generated by positively graded elements. Then if M is a graded module over R for which M i = 0 {\displaystyle M_{i}=0} for i sufficiently negative (in particular, if M is finitely generated and R does not contain elements of negative ...
Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
Given a linear operator T on a finite-dimensional vector space V, one can consider the vector space with operator as a module over the polynomial ring in one variable R = K[T], as in the structure theorem for finitely generated modules over a principal ideal domain. Then the spectrum of K[T] (as a ring) equals the spectrum of T (as an operator).