Search results
Results from the WOW.Com Content Network
In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it is the case that ( + ) = + , where i is the imaginary unit (i 2 = −1).
de Moivre's illustration of his piecewise linear approximation. De Moivre's law first appeared in his 1725 Annuities upon Lives, the earliest known example of an actuarial textbook. [6] Despite the name now given to it, de Moivre himself did not consider his law (he called it a "hypothesis") to be a true description of the pattern of human ...
Abraham de Moivre was born in Vitry-le-François in Champagne on 26 May 1667. His father, Daniel de Moivre, was a surgeon who believed in the value of education. Though Abraham de Moivre's parents were Protestant, he first attended the Christian Brothers' Catholic school in Vitry, which was unusually tolerant given religious tensions in France at the time.
Published in 1738 by Woodfall and running for 258 pages, the second edition of de Moivre's book introduced the concept of normal distributions as approximations to binomial distributions. In effect de Moivre proved a special case of the central limit theorem. Sometimes his result is called the theorem of de Moivre–Laplace.
The n-th power of a complex number can be computed using de Moivre's formula, which is obtained by repeatedly applying the above formula for the product: = ⏟ = (( + )) = ( + ). For example, the first few powers of the imaginary unit i are i , i 2 = − 1 , i 3 = − i , i 4 = 1 , i 5 = i , … {\displaystyle i,i^{2}=-1,i^{3}=-i,i ...
which is valid for all real x, can be used to put the formula for the n th roots of unity into the form e 2 π i k n , 0 ≤ k < n . {\displaystyle e^{2\pi i{\frac {k}{n}}},\quad 0\leq k<n.} It follows from the discussion in the previous section that this is a primitive n th-root if and only if the fraction k / n is in lowest terms ...
De Gua's theorem ; De Moivre's theorem (complex analysis) De Rham's theorem (differential topology) Deduction theorem ; Dehn-Nielsen-Baer theorem (geometric topology) Denjoy theorem (dynamical systems) Denjoy–Carleman theorem (functional analysis) Denjoy-Young-Saks theorem (real analysis) Desargues's theorem (projective geometry)
de Moivre's theorem may be: de Moivre's formula, a trigonometric identity; Theorem of de Moivre–Laplace, a central limit theorem This page was last edited on 28 ...