Ads
related to: 3 manifolds in math practice pdf with answers printable
Search results
Results from the WOW.Com Content Network
The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
The Weeks manifold is the hyperbolic three-manifold of smallest volume [3] and the Meyerhoff manifold is the one of next smallest volume. The complement in the three-sphere of the figure-eight knot is an arithmetic hyperbolic three-manifold [4] and attains the smallest volume among all cusped hyperbolic three-manifolds. [5]
In topology, a branch of mathematics, a Dehn surgery, named after Max Dehn, is a construction used to modify 3-manifolds. The process takes as input a 3-manifold together with a link . It is often conceptualized as two steps: drilling then filling .
The geometry and topology of three-manifolds is a set of widely circulated notes for a graduate course taught at Princeton University by William Thurston from 1978 to 1980 describing his work on 3-manifolds. They were written by Thurston, assisted by students William Floyd and Steven Kerchoff. [1]
Once a small subfield of geometric topology, the theory of 3-manifolds has experienced tremendous growth in the latter half of the 20th century. The methods used tend to be quite specific to three dimensions, since different phenomena occur for 4-manifolds and higher dimensions.
In hyperbolic geometry, the Meyerhoff manifold is the arithmetic hyperbolic 3-manifold obtained by (,) surgery on the figure-8 knot complement. It was introduced by Robert Meyerhoff ( 1987 ) as a possible candidate for the hyperbolic 3-manifold of smallest volume, but the Weeks manifold turned out to have slightly smaller volume.
In mathematics, in the topology of 3-manifolds, the loop theorem is a generalization of Dehn's lemma. The loop theorem was first proven by Christos Papakyriakopoulos in 1956, along with Dehn's lemma and the Sphere theorem. A simple and useful version of the loop theorem states that if for some 3-dimensional manifold M with boundary ∂M there ...
Ads
related to: 3 manifolds in math practice pdf with answers printable