Search results
Results from the WOW.Com Content Network
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. Connectives can be used to connect logical formulas.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
In high-level computer programming and digital electronics, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol & (sometimes doubled as in &&). Many languages also provide short-circuit control structures corresponding to logical conjunction.
The physical network topology can be directly represented in a network diagram, as it is simply the physical graph represented by the diagrams, with network nodes as vertices and connections as undirected or direct edges (depending on the type of connection). [3]
The AND gate is a basic digital logic gate that implements logical conjunction (∧) from mathematical logic – AND gate behaves according to the truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If not all of the inputs to the AND gate are HIGH, a LOW output results.
The scope of a logical connective occurring within a formula is the smallest well-formed formula that contains the connective in question. [2] [6] [8] The connective with the largest scope in a formula is called its dominant connective, [9] [10] main connective, [6] [8] [7] main operator, [2] major connective, [4] or principal connective; [4] a connective within the scope of another connective ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Logic plays a fundamental role in computer science. Some of the key areas of logic that are particularly significant are computability theory (formerly called recursion theory), modal logic and category theory. The theory of computation is based on concepts defined by logicians and mathematicians such as Alonzo Church and Alan Turing.