Search results
Results from the WOW.Com Content Network
Symbol Meaning SI unit of measure magnetic vector potential: tesla meter (T⋅m) area: square meter (m 2) amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density
Symbol Description SI base unit Dimension Comments Amount of substance: n: The quantity proportional to the number of particles in a sample, with the Avogadro constant as the proportionality constant: mole (mol) N: extensive, scalar Length: l: The one-dimensional extent of an object metre (m) L: extensive: Time: t: The duration of an event ...
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma , v = fλ , E = mcΔT , V = π r 2 h and τ = rF sin θ .
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
Note: The empty set symbol ∅ looks similar, but is unrelated to the Greek letter. or represents: the golden ratio 1.618... in mathematics, art, and architecture; Euler's totient function in number theory; the argument of a complex number in mathematics; the value of a plane angle in physics and mathematics
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured.
In solid-state physics, the work function (sometimes spelled workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" means that the final electron position is far from the surface on the atomic scale, but still too ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.