enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    For example, a procedure that adds up all elements of a list requires time proportional to the length of the list, if the adding time is constant, or, at least, bounded by a constant. Linear time is the best possible time complexity in situations where the algorithm has to sequentially read its entire input.

  3. Interval scheduling - Wikipedia

    en.wikipedia.org/wiki/Interval_scheduling

    For example, the subset {A,C} is compatible, as is the subset {B}; but neither {A,B} nor {B,C} are compatible subsets, because the corresponding intervals within each subset overlap. The interval scheduling maximization problem (ISMP) is to find a largest compatible set, i.e., a set of non-overlapping intervals of maximum size.

  4. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  5. Algorithmic complexity - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_complexity

    In computational complexity theory, although it would be a non-formal usage of the term, the time/space complexity of a particular problem in terms of all algorithms that solve it with computational resources (i.e., time or space) bounded by a function of the input's size.

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...

  7. Amortized analysis - Wikipedia

    en.wikipedia.org/wiki/Amortized_analysis

    Amortized analysis initially emerged from a method called aggregate analysis, which is now subsumed by amortized analysis. The technique was first formally introduced by Robert Tarjan in his 1985 paper Amortized Computational Complexity, [1] which addressed the need for a more useful form of analysis than the common probabilistic methods used.

  8. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    For example, the largest amount that cannot be obtained using only coins of 3 and 5 units is 7 units. The solution to this problem for a given set of coin denominations is called the Frobenius number of the set. The Frobenius number exists as long as the set of coin denominations is setwise coprime.

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.