Search results
Results from the WOW.Com Content Network
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
Senior undergraduate study notes on this subject, from Prof. Rizzo. A further set of study notes in tutorial form, with guidance and comments, from Profs. Grossman and Cammers. A review by Prof. Kocienski. A user site excerpting the classic Greene and Wuts text regarding stability of a few key groups, from this reference's extensive tables.
The Favorskii rearrangement is principally a rearrangement of cyclopropanones and α-halo ketones that leads to carboxylic acid derivatives. In the case of cyclic α-halo ketones, the Favorskii rearrangement constitutes a ring contraction.
In chemistry, hydroxylation refers to the installation of a hydroxyl group (−OH) into an organic compound. Hydroxylations generate alcohols and phenols, which are very common functional groups. Hydroxylation confers some degree of water-solubility. Hydroxylation of a hydrocarbon is an oxidation, thus a step in degradation.
In organic chemistry the Brook rearrangement refers to any [1,n] carbon to oxygen silyl migration. The rearrangement was first observed in the late 1950s by Canadian chemist Adrian Gibbs Brook (1924–2013), after which the reaction is named. [ 1 ]
Organic redox reaction The Mozingo reduction , also known as Mozingo reaction or thioketal reduction , is a chemical reaction capable of fully reducing a ketone or aldehyde to the corresponding alkane via a dithioacetal .
It has become a classic reaction in organic synthesis and has been reviewed many times before. [3] [4] [5] It can be viewed as an intramolecular redox reaction, as one carbon center is oxidized while the other is reduced. Scheme 1. Benzilic acid rearrangement
In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1] It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.