enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    This linear combination gives us an upper bound on the objective. The variables y of the dual LP are the coefficients of this linear combination. The dual LP tries to find such coefficients that minimize the resulting upper bound. This gives the following LP: [1]: 81–83 Minimize b T y subject to A T y ≥ c, y ≥ 0

  3. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The Lagrangian dual program is the program of maximizing g: max λ ≥ 0 g ( λ ) {\displaystyle \max _{\lambda \geq 0}g(\lambda )} . The optimal solution to the dual program is a lower bound for the optimal solution of the original (primal) program; this is the weak duality principle.

  4. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A basis B of the LP is called dual-optimal if the solution = is an optimal solution to the dual linear program, that is, it minimizes . In general, a primal-optimal basis is not necessarily dual-optimal, and a dual-optimal basis is not necessarily primal-optimal (in fact, the solution of a primal-optimal basis may even be unfeasible for the ...

  5. Duality gap - Wikipedia

    en.wikipedia.org/wiki/Duality_gap

    This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem ...

  6. Duality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Duality_(mathematics)

    A linear program may be specified by a system of real variables (the coordinates for a point in Euclidean space ), a system of linear constraints (specifying that the point lie in a halfspace; the intersection of these halfspaces is a convex polytope, the feasible region of the program), and a linear function (what to optimize).

  7. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    There are two ideas fundamental to duality theory. One is the fact that (for the symmetric dual) the dual of a dual linear program is the original primal linear program. Additionally, every feasible solution for a linear program gives a bound on the optimal value of the objective function of its dual.

  8. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    He showed that linear programs can be solved in polynomial time. Here is a sketch of Khachiyan's theorem. [7]: Sec.8.4.2 Step 1: reducing optimization to search. The theorem of linear programming duality says that we can reduce the above minimization problem to the search problem: find x,y s.t. Ax ≤ b ; A T y = c ; y ≤ 0 ; c T x=b T y.

  9. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively, mathematical programming). It is used amongst other things in the proof of the Karush–Kuhn–Tucker theorem in nonlinear programming . [ 2 ]