Search results
Results from the WOW.Com Content Network
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
The Boltzmann machine can be thought of as a noisy Hopfield network. It is one of the first neural networks to demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, but the contrastive divergence algorithm speeds up training for Boltzmann machines and Products of Experts.
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.
Restricted Boltzmann machines (RBMs) are often used as a building block for multilayer learning architectures. [ 6 ] [ 24 ] An RBM can be represented by an undirected bipartite graph consisting of a group of binary hidden variables , a group of visible variables, and edges connecting the hidden and visible nodes.
The Relational perspective map was introduced in. [27] The algorithm firstly used the flat torus as the image manifold, then it has been extended (in the software VisuMap to use other types of closed manifolds, like the sphere, projective space, and Klein bottle, as image manifolds.
In this example there are 3 hidden units (blue) and 4 visible units (white). This is not a restricted Boltzmann machine. A Boltzmann machine, like a Sherrington–Kirkpatrick model, is a network of units with a total "energy" (Hamiltonian) defined for the overall network. Its units produce binary results.
Download QR code; Print/export ... Boltzmann machine (e.g. Restricted Boltzmann machine, Deep belief network) Variational autoencoder;
The two historically common activation functions are both sigmoids, and are described by = = (+).The first is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic function, which is similar in shape but ranges from 0 to 1.