Search results
Results from the WOW.Com Content Network
where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...
The force between the three bodies is the classical Newtonian gravitational force. For example, P1 is the Earth, P2 is the Moon and P is a spacecraft; or P1 is the Sun, P2 is Jupiter and P is a comet, etc. This model is called the restricted three-body problem. [1] The weak stability boundary defines a region about P2 where P is temporarily ...
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun
The strong interaction, or strong nuclear force, is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At ...
The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime. By the beginning of the 20th century, Newton's law of universal gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between masses. In Newton's model ...
Newton's law of gravity says that the gravitational force felt on mass m i by a single mass m j is given by [15] = ‖ ‖ ‖ ‖ = ‖ ‖, where G is the gravitational constant and ‖ q j − q i ‖ is the magnitude of the distance between q i and q j (metric induced by the l 2 norm).
In this theory, the field equation is the Poisson equation =, where is the gravitational potential and is the density of matter, augmented by an equation of motion for a test particle in an ambient gravitational field, which we can derive from Newton's force law and which states that the acceleration of the test particle is given by the ...