Search results
Results from the WOW.Com Content Network
Electric dipole p and its torque τ in a uniform E field. An object with an electric dipole moment p is subject to a torque τ when placed in an external electric field E. The torque tends to align the dipole with the field. A dipole aligned parallel to an electric field has lower potential energy than a dipole making some non-zero angle with it.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system is a pair of charges of equal magnitude but opposite sign separated by some typically small distance. (A permanent electric dipole is called an electret.)
The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).
The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin). [1] Within the Standard Model , such a dipole is predicted to be non-zero but very small, at most 10 −38 e ⋅cm , [ 2 ] where e stands for the elementary charge .
Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Molecules with symmetry point groups or containing inversion symmetry will not have a permanent dipole moment, while highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.41 D. [3] A proton and an electron 1 Å apart have a dipole ...
German physicist Heinrich Hertz first demonstrated the existence of radio waves in 1887 using what we now know as a dipole antenna (with capacitative end-loading). On the other hand, Guglielmo Marconi empirically found that he could just ground the transmitter (or one side of a transmission line, if used) dispensing with one half of the antenna, thus realizing the vertical or monopole antenna.
The electric displacement field "D" is defined as +, where is the vacuum permittivity (also called permittivity of free space), E is the electric field, and P is the (macroscopic) density of the permanent and induced electric dipole moments in the material, called the polarization density.