Search results
Results from the WOW.Com Content Network
In environmental chemistry, the chemical oxygen demand (COD) is an indicative measure of the amount of oxygen that can be consumed by reactions in a measured solution. It is commonly expressed in mass of oxygen consumed over volume of solution, which in SI units is milligrams per liter ( mg / L ).
The Streeter–Phelps equation determines the relation between the dissolved oxygen concentration and the biological oxygen demand over time and is a solution to the linear first order differential equation [1]
Theoretical oxygen demand (ThOD) is the calculated amount of oxygen required to oxidize a compound to its final oxidation products. [1] However, there are some differences between standard methods that can influence the results obtained: for example, some calculations assume that nitrogen released from organic compounds is generated as ammonia, whereas others allow for ammonia oxidation to ...
BOD test bottles at the laboratory of a wastewater treatment plant. Biochemical oxygen demand (also known as BOD or biological oxygen demand) is an analytical parameter representing the amount of dissolved oxygen (DO) consumed by aerobic bacteria growing on the organic material present in a water sample at a specific temperature over a specific time period.
Biochemical oxygen demand (BOD) is a measure of the amount of oxygen required by aerobic micro-organisms to decompose the organic matter in a sample of material being used in the biodigester as well as the BOD for the liquid discharge allows for the calculation of the daily energy output from a biodigester.
Population equivalent (PE) or unit per capita loading, or equivalent person (EP), is a parameter for characterizing industrial wastewaters.It essentially compares the polluting potential of an industry (in terms of biodegradable organic matter) with a population (or certain number of people), which would produce the same polluting load.
Other important organic compounds that contain oxygen are: glycerol, formaldehyde, glutaraldehyde, citric acid, acetic anhydride, acetamide, etc. Epoxides are ethers in which the oxygen atom is part of a ring of three atoms. Oxygen reacts spontaneously with many organic compounds at or below room temperature in a process called autoxidation. [7]
Irradiation of oxygen gas in the presence of an organic dye as a sensitizer, such as rose bengal, methylene blue, or porphyrins—a photochemical method—results in its production. [19] [9] Large steady state concentrations of singlet oxygen are reported from the reaction of triplet excited state pyruvic acid with dissolved oxygen in water. [20]