enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    Below is an animation of the piston motion equations with the same values of rod length and crank radius as in the graphs above. Piston motion animation with the various half strokes from the graph above (using the same color code)

  3. Mean piston speed - Wikipedia

    en.wikipedia.org/wiki/Mean_piston_speed

    The mean piston speed is the average speed of the piston in a reciprocating engine. It is a function of stroke and RPM. There is a factor of 2 in the equation to account for one stroke to occur in 1/2 of a crank revolution (or alternatively: two strokes per one crank revolution) and a '60' to convert seconds from minutes in the RPM term.

  4. Mean effective pressure - Wikipedia

    en.wikipedia.org/wiki/Mean_effective_pressure

    As piston engines usually have their maximum torque at a lower rotating speed than the maximum power output, the BMEP is lower at full power (at higher rotating speed). If the same engine is rated 72 kW at 5400 min −1 = 90 s −1, and its BMEP is 0.80 MPa, we get the following equation: =

  5. Tax horsepower - Wikipedia

    en.wikipedia.org/wiki/Tax_horsepower

    The formula was calculated from total piston surface area (i.e., "bore" only). The factor of 2.5 accounts for characteristics that were widely seen in engines at the time, such as a mean effective pressure in the cylinder of 90 psi (6.2 bar) and a maximum piston speed of 1,000 feet per minute (5.1 m/s).

  6. Compression ratio - Wikipedia

    en.wikipedia.org/wiki/Compression_ratio

    It is therefore calculated by the formula [10] = + where is the displacement volume. This is the volume inside the cylinder displaced by the piston from the beginning of the compression stroke to the end of the stroke. is the clearance volume. This is the volume of the space in the cylinder left at the end of the compression stroke.

  7. Slider-crank linkage - Wikipedia

    en.wikipedia.org/wiki/Slider-crank_linkage

    But in reality, the torque is maximum at crank angle of less than α = 90° from TDC for a given force on the piston. One way to calculate this angle is to find out when the Connecting rod smallend (piston) speed becomes the fastest in downward direction given a steady crank rotational velocity. Piston speed x' is expressed as:

  8. Engine displacement - Wikipedia

    en.wikipedia.org/wiki/Engine_displacement

    Engine displacement is the measure of the cylinder volume swept by all of the pistons of a piston engine, excluding the combustion chambers. [1] It is commonly used as an expression of an engine's size, and by extension as an indicator of the power (through mean effective pressure and rotational speed ) an engine might be capable of producing ...

  9. Otto cycle - Wikipedia

    en.wikipedia.org/wiki/Otto_cycle

    Piston moves from crank end (BDC, bottom dead centre and maximum volume) to cylinder head end (TDC, top dead centre and minimum volume) as the working gas with initial state 1 is compressed isentropically to state point 2, through compression ratio (V 1 /V 2). Mechanically this is the isentropic compression of the air/fuel mixture in the ...