Search results
Results from the WOW.Com Content Network
Right Prism. A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. [5] This applies if and only if all the joining faces are rectangular. The dual of a right n-prism is a right n-bipyramid. A right prism (with rectangular sides) with regular n-gon bases has Schläfli symbol { }×{n}.
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
By definition, this makes it a right rectangular prism. Rectangular cuboids may be referred to colloquially as "boxes" (after the physical object). If two opposite faces become squares, the resulting one may obtain another special case of rectangular prism, known as square rectangular cuboid.
The triangular, square, and pentagonal cupolae are the only non-trivial convex cupolae with regular faces: The "hexagonal cupola" is a plane figure, and the triangular prism might be considered a "cupola" of degree 2 (the cupola of a line segment and a square).
A square frustum is a frustum with a square base, but the rest of its faces are quadrilaterals; the square frustum is formed by truncating the apex of a square pyramid. In attempting to classify cuboids by their symmetries, Robertson (1983) found that there were at least 22 different cases, "of which only about half are familiar in the shapes ...
√ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
If the prism's edges are perpendicular to the base, the lateral faces are rectangles, and the prism is called a right triangular prism. [3] This prism may also be considered a special case of a wedge. [4] 3D model of a (uniform) triangular prism. If the base is equilateral and the lateral faces are square, then the right triangular prism is ...