Search results
Results from the WOW.Com Content Network
Zener breakdown is found to occur at electric field intensity of about 3 × 10 7 V/m. [1] Zener breakdown occurs in heavily doped junctions (p-type semiconductor moderately doped and n-type heavily doped), which produces a narrow depletion region. [2] The avalanche breakdown occurs in lightly doped junctions, which produce a wider depletion region.
A subsurface Zener diode, also called a buried Zener, is a device similar to the surface Zener, but the doping and design is such that the avalanche region is located deeper in the structure, typically several micrometers below the oxide. Hot carriers then lose energy by collisions with the semiconductor lattice before reaching the oxide layer ...
The ideality factor typically varies from 1 to 2 (though can in some cases be higher), depending on the fabrication process and semiconductor material. The ideality factor was added to account for imperfect junctions observed in real transistors, mainly due to carrier recombination as charge carriers cross the depletion region.
Avalanche diodes (commonly encountered as high voltage Zener diodes) are constructed to break down at a uniform voltage and to avoid current crowding during breakdown. These diodes can indefinitely sustain a moderate level of current during breakdown. The voltage at which the breakdown occurs is called the breakdown voltage.
As recombination proceeds and more ions are created, an increasing electric field develops through the depletion zone that acts to slow and then finally stop recombination. At this point, there is a "built-in" potential across the depletion zone. A p–n junction diode in low forward bias mode. The depletion width decreases as voltage increases.
In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away, or been forced away by an electric field. The only elements left ...
A new study explains how mitochondria act as “reservoirs” to store NAD for cells to use, which could help scientists come up with NAD-boosting therapies to combat aging and age-related diseases.
Inside the depletion region, both diffusion current and drift current are present. At equilibrium in a p–n junction, the forward diffusion current in the depletion region is balanced with a reverse drift current, so that the net current is zero. The diffusion constant for a doped material can be determined with the Haynes–Shockley experiment.