enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.

  3. Nonelementary integral - Wikipedia

    en.wikipedia.org/wiki/Nonelementary_Integral

    In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [ 2 ]

  4. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    The x antiderivative of y and the second antiderivative of f, Euler notation. D-notation can be used for antiderivatives in the same way that Lagrange's notation is [ 11 ] as follows [ 10 ] D − 1 f ( x ) {\displaystyle D^{-1}f(x)} for a first antiderivative,

  5. List of integrals of rational functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, n and p toward 0. These reduction formulas can be used for integrands having integer and/or fractional exponents.

  6. Risch algorithm - Wikipedia

    en.wikipedia.org/wiki/Risch_Algorithm

    Risch called it a decision procedure, because it is a method for deciding whether a function has an elementary function as an indefinite integral, and if it does, for determining that indefinite integral. However, the algorithm does not always succeed in identifying whether or not the antiderivative of a given function in fact can be expressed ...

  7. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    His second proof was geometric. If () = and () =, the theorem can be written: + =.The figure on the right is a proof without words of this formula. Laisant does not discuss the hypotheses necessary to make this proof rigorous, but this can be proved if is just assumed to be strictly monotone (but not necessarily continuous, let alone differentiable).

  8. Constant of integration - Wikipedia

    en.wikipedia.org/wiki/Constant_of_integration

    In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.

  9. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    This is only useful if the integral exists. In particular we need ′ to be non-zero across the range of integration. It follows that a function that has a continuous derivative has an inverse in a neighbourhood of every point where the derivative is non-zero. This need not be true if the derivative is not continuous.