Search results
Results from the WOW.Com Content Network
RNN or rnn may refer to: Random neural network , a mathematical representation of an interconnected network of neurons or cells which exchange spiking signals Recurrent neural network , a class of artificial neural networks where connections between nodes form a directed graph along a temporal sequence
A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.
An RNN-based model can be factored into two parts: configuration and architecture. Multiple RNN can be combined in a data flow, and the data flow itself is the configuration. Each RNN itself may have any architecture, including LSTM, GRU, etc.
rnn is an open-source machine learning framework that implements recurrent neural network architectures, such as LSTM and GRU, natively in the R programming language, ...
The general structure of RNN and BRNN can be depicted in the right diagram. By using two time directions, input information from the past and future of the current time frame can be used unlike standard RNN which requires the delays for including future information.
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]
Template matching [1] is a technique in digital image processing for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, [2] navigation of mobile robots, [3] or edge detection in images.
Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]