Search results
Results from the WOW.Com Content Network
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):
Dividing a circle into areas – Problem in geometry; Equal incircles theorem – On rays from a point to a line, with equal inscribed circles between adjacent rays; Five circles theorem – Derives a pentagram from five chained circles centered on a common sixth circle; Gauss circle problem – How many integer lattice points there are in a circle
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
For more information, see the article about circle. Articles relating to circles , a shape consisting of all points in a plane that are at a given distance from a given point, the centre . Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant .
The maximum number of pieces from consecutive cuts are the numbers in the Lazy Caterer's Sequence. When a circle is cut n times to produce the maximum number of pieces, represented as p = f (n), the n th cut must be considered; the number of pieces before the last cut is f (n − 1), while the number of pieces added by the last cut is n.
The transformation sends the circle to an ellipse by stretching or shrinking the horizontal and vertical diameters to the major and minor axes of the ellipse. The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is π /4, which means the ratio of the ellipse to the rectangle is also π /4
This article's title is kind of terrible. I'm pretty sure the phrase "dividing a circle into areas" is a very general phrase, and doesn't specifically refer to this problem. I think the title "Moser's circle problem" would be better. Nog642 07:38, 1 September 2023 (UTC)