Search results
Results from the WOW.Com Content Network
The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal.This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commutativity).
In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. [1] [2]The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil.
The nilpotent elements of a commutative ring R form an ideal of R, called the nilradical of R; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero. A quotient ring R/I is reduced if and only if I is a radical ...
Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).
In mathematics, more specifically ring theory, an ideal I of a ring R is said to be a nilpotent ideal if there exists a natural number k such that I k = 0. [1] By I k, it is meant the additive subgroup generated by the set of all products of k elements in I. [1]
A characteristic similar to that of Jacobson radical and annihilation of simple modules is available for nilradical: nilpotent elements of a ring are precisely those that annihilate all integral domains internal to the ring (that is, of the form / for prime ideals ). This follows from the fact that nilradical is the intersection of all prime ...
radical 1. The Jacobson radical of a ring. 2. The nilradical of a ring. 3. A radical of an element x of a ring is an element such that some positive power is x. 4. The radical of an ideal is the ideal of radicals of its elements. 5. The radical of a submodule M of a module N is the ideal of elements x such that some power of x maps N into M. 6.
If R is commutative, the Jacobson radical always contains the nilradical. If the ring R is a finitely generated Z-algebra, then the nilradical is equal to the Jacobson radical, and more generally: the radical of any ideal I will always be equal to the intersection of all the maximal ideals of R that contain I. This says that R is a Jacobson ring.