enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator. Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.

  3. Ladder operator - Wikipedia

    en.wikipedia.org/wiki/Ladder_operator

    In linear algebra (and its application to quantum mechanics), a raising or lowering operator (collectively known as ladder operators) is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the creation operator, and the lowering operator the annihilation ...

  4. Energy operator - Wikipedia

    en.wikipedia.org/wiki/Energy_operator

    Since the operator is linear, they are valid for any linear combination of plane waves, and so they can act on any wave function without affecting the properties of the wave function or operators. Hence this must be true for any wave function. It turns out to work even in relativistic quantum mechanics, such as the Klein–Gordon equation above.

  5. Teaching quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Teaching_quantum_mechanics

    Quantum mechanics is a difficult subject to teach due to its counterintuitive nature. [1] As the subject is now offered by advanced secondary schools, educators have applied scientific methodology to the process of teaching quantum mechanics , in order to identify common misconceptions and ways of improving students' understanding.

  6. Rotation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_operator_(quantum...

    Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):

  7. Translation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Translation_operator...

    Consider a single particle in one dimension. Unlike classical mechanics, in quantum mechanics a particle neither has a well-defined position nor a well-defined momentum. In the quantum formulation, the expectation values [5] play the role of the classical variables.

  8. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/.../Hamiltonian_(quantum_mechanics)

    In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy.Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy.

  9. Exchange operator - Wikipedia

    en.wikipedia.org/wiki/Exchange_operator

    In quantum mechanics, the exchange operator ^, also known as permutation operator, [1] is a quantum mechanical operator that acts on states in Fock space. The exchange operator acts by switching the labels on any two identical particles described by the joint position quantum state | x 1 , x 2 {\displaystyle \left|x_{1},x_{2}\right\rangle } . [ 2 ]