Search results
Results from the WOW.Com Content Network
Lightly resting atop the longest cilia of the inner hair cells is the tectorial membrane, which moves back and forth with each cycle of sound, tilting the cilia, which is what elicits the hair cells' electrical responses. Inner hair cells, like the photoreceptor cells of the eye, show a graded response, instead of the spikes typical of other ...
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates , the inner ear is mainly responsible for sound detection and balance. [ 1 ] In mammals , it consists of the bony labyrinth , a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [ 2 ]
The saccule (Latin: sacculus) is a bed of sensory cells in the inner ear that detects linear acceleration and head tilting in the vertical plane, and converts these vibrations into electrical impulses to be interpreted by the brain. When the head moves vertically, the sensory cells of the saccule are moved due to a combination of inertia and ...
The middle ear plays a crucial role in the auditory process, as it essentially converts pressure variations in air to perturbations in the fluids of the inner ear. In other words, it is the mechanical transfer function that allows for efficient transfer of collected sound energy between two different media. [ 2 ]
Most sensory systems have a quiescent state, that is, the state that a sensory system converges to when there is no input. [citation needed] This is well-defined for a linear time-invariant system, whose input space is a vector space, and thus by definition has a point of zero. It is also well-defined for any passive sensory system, that is, a ...
The vestibular system, in vertebrates, is a sensory system that creates the sense of balance and spatial orientation for the purpose of coordinating movement with balance. Together with the cochlea, a part of the auditory system, it constitutes the labyrinth of the inner ear in most mammals.
The crista ampullaris itself is a cone-shaped structure, covered in receptor cells called "hair cells". Covering the crista ampullaris is a gelatinous mass called the cupula. Upon angular acceleration (rotation), the endolymph within the semicircular duct deflects the cupula against the hair cells of the crista ampullaris.
The otolith organs are beds of sensory cells in the inner ear, specifically small patches of hair cells. Overlying the hair cells and their hair bundles is a gelatinous layer and above that layer is the otolithic membrane. [1] The utricle serves to measure horizontal accelerations and the saccule responds to vertical accelerations.