Search results
Results from the WOW.Com Content Network
The optical configuration for Fourier ptychography. Fourier ptychography is a computational imaging technique based on optical microscopy that consists in the synthesis of a wider numerical aperture from a set of full-field images acquired at various coherent illumination angles, [1] resulting in increased resolution compared to a conventional microscope.
In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, NA has the property that it is constant for a beam as it goes from one material to another, provided there is no ...
Efforts to improve resolution by increasing the numerical aperture have led to the use of immersion lithography. As further improvements in resolution through wavelength reduction or increases in numerical aperture have become either technically challenging or economically unfeasible, much attention has been paid to reducing the k1-factor.
Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = , where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).
Optical systems, and in particular optical aberrations are not always rotationally symmetric. Periodic patterns that have a different orientation can thus be imaged with different contrast even if their periodicity is the same. Optical transfer function or modulation transfer functions are thus generally two-dimensional functions.
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
The ability to resolve features in optical lithography is directly related to the numerical aperture of the imaging equipment, the numerical aperture being the sine of the maximum refraction angle multiplied by the refractive index of the medium through which the light travels. The lenses in the highest resolution "dry" photolithography ...
The ability of a lens to resolve detail is usually determined by the quality of the lens, but is ultimately limited by diffraction.Light coming from a point source in the object diffracts through the lens aperture such that it forms a diffraction pattern in the image, which has a central spot and surrounding bright rings, separated by dark nulls; this pattern is known as an Airy pattern, and ...