Ads
related to: rational mapping examples math facts multiplication 1 4education.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Education.com Blog
Search results
Results from the WOW.Com Content Network
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
The use of multiple representations supports and requires tasks that involve decision-making and other problem-solving skills. [2] [3] [4] The choice of which representation to use, the task of making representations given other representations, and the understanding of how changes in one representation affect others are examples of such mathematically sophisticated activities.
[4] If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.
A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f.A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y.
A variety X is separably uniruled if there is a variety Y with a dominant separable rational map Y × P 1 – → X which does not factor through the projection to Y. ("Separable" means that the derivative is surjective at some point; this would be automatic for a dominant rational map in characteristic zero.)
Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F. In geometrical terms this states that a non-constant rational map from the projective line to a curve C can only occur when C also has genus 0.
A complex rational function with degree one is a Möbius transformation. Rational functions are representative examples of meromorphic functions. [3] Iteration of rational functions on the Riemann sphere (i.e. a rational mapping) creates discrete dynamical systems. [4] Julia sets for rational maps
Dirichlet function: is an indicator function that matches 1 to rational numbers and 0 to irrationals. It is nowhere continuous. Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function.
Ads
related to: rational mapping examples math facts multiplication 1 4education.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama