Search results
Results from the WOW.Com Content Network
The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs).
Bernoulli's equation; Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy of equations; Bessel's differential equation; Boltzmann equation; Borda–Carnot equation; Burgers' equation; Darcy–Weisbach equation; Dirac equation. Dirac equation in the algebra of physical space; Dirac–Kähler equation; Doppler equations; Drake equation (aka ...
In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams .
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. [1] [2] [3] In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. [2]
By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirÅ Tomonaga and Julian Schwinger appreciated that covariant perturbation ...
The technique of renormalization, suggested by Ernst Stueckelberg and Hans Bethe and implemented by Dyson, Feynman, Schwinger, and Tomonaga compensates for this effect and eliminates the troublesome infinities. After renormalization, calculations using Feynman diagrams match experimental results with very high accuracy.
In his PhD thesis project, Paul Dirac [2] discovered that the equation for the operators in the Heisenberg representation, as it is now called, closely translates to classical equations for the dynamics of certain quantities in the Hamiltonian formalism of classical mechanics, when one expresses them through Poisson brackets, a procedure now ...
In quantum electrodynamics (QED), the Schwinger limit is a scale above which the electromagnetic field is expected to become nonlinear. The limit was first derived in one of QED's earliest theoretical successes by Fritz Sauter in 1931 [ 1 ] and discussed further by Werner Heisenberg and his student Hans Heinrich Euler . [ 2 ]