enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    The distance between the centers along the shortest path namely that straight line will therefore be r 1 + r 2 where r 1 is the radius of the first sphere and r 2 is the radius of the second. In close packing all of the spheres share a common radius, r. Therefore, two centers would simply have a distance 2r.

  3. Interstitial site - Wikipedia

    en.wikipedia.org/wiki/Interstitial_site

    [citation needed] In a close-packed structure there are 4 atoms per unit cell and it will have 4 octahedral voids (1:1 ratio) and 8 tetrahedral voids (1:2 ratio) per unit cell. [1] The tetrahedral void is smaller in size and could fit an atom with a radius 0.225 times the size of the atoms making up the lattice.

  4. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    The two colors of spheres represent the two types of atoms. One structure is the "interpenetrating primitive cubic" structure, also called a "caesium chloride" or B2 structure. This structure is often confused for a body-centered cubic structure because the arrangement of atoms is the same.

  5. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...

  6. List of voids - Wikipedia

    en.wikipedia.org/wiki/List_of_voids

    Voids are particularly galaxy-poor regions of space between filaments, making up the large-scale structure of the universe. Some voids are known as supervoids . In the tables, z is the cosmological redshift , c the speed of light , and h the dimensionless Hubble parameter , which has a value of approximately 0.7 (the Hubble constant H 0 = h × ...

  7. Interstitial defect - Wikipedia

    en.wikipedia.org/wiki/Interstitial_defect

    In both of these very similar lattices there are two sorts of interstice, or hole: Two tetrahedral holes per metal atom, i.e. the hole is between four metal atoms; One octahedral hole per metal atom, i.e. the hole is between six metal atoms; It was suggested by early workers that: the metal lattice was relatively unaffected by the interstitial atom

  8. Diamond cubic - Wikipedia

    en.wikipedia.org/wiki/Diamond_cubic

    Two points are adjacent in the diamond structure if and only if their four-dimensional coordinates differ by one in a single coordinate. The total difference in coordinate values between any two points (their four-dimensional Manhattan distance) gives the number of edges in the shortest path between them in the diamond structure. The four ...

  9. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, [1] in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like a honeycomb), and each circle is surrounded by six other circles.