Search results
Results from the WOW.Com Content Network
At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol/L. At higher temperatures, the molarity of the saturated solution decreases and the density increases. [8]
20 °C: 857.1 kPa 0.61028 g/cm 3: ... The third column is the density of the liquid phase. The fourth column is the density of the vapor. ... Freezing curve of ...
Liquid ammonia has a very high standard enthalpy change of vapourization (23.5 kJ/mol; [28] for comparison, water's is 40.65 kJ/mol, methane 8.19 kJ/mol and phosphine 14.6 kJ/mol) and can be transported in pressurized or refrigerated vessels; however, at standard temperature and pressure liquid anhydrous ammonia will vaporize.
Liquid water has a density of approximately 1 g/cm 3 (1 g/mL). Thus 100 mL of water is equal to approximately 100 g. Thus 100 mL of water is equal to approximately 100 g. Therefore, a solution with 1 g of solute dissolved in final volume of 100 mL aqueous solution may also be considered 1% m/m (1 g solute in 99 g water).
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm ), which is the average atmospheric pressure.
Ammonium heptamolybdate is the inorganic compound whose chemical formula is (NH 4) 6 Mo 7 O 24, normally encountered as the tetrahydrate.A dihydrate is also known. It is a colorless solid, often referred to as ammonium paramolybdate or simply as ammonium molybdate, although "ammonium molybdate" can also refer to ammonium orthomolybdate, (NH 4) 2 MoO 4, and several other compounds.
Liquid water has a density of about 1 kg/dm 3, making any of these SI units numerically convenient to use as most solids and liquids have densities between 0.1 and 20 kg/dm 3. kilogram per cubic decimetre (kg/dm 3 )
Near 0 °Bé would be approximately the density of water. −100 °Bé (specific gravity, 0.615) would be among the lightest fluids known, such as liquid butane. Thus, the system could be understood as representing a practical spectrum of the density of liquids between −100 and 100, with values near 0 being the approximate density of water.