Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
One can then understand from Eq. and in which sense the model is gravity-related: the coupling constant between the system and the noise is proportional to the gravitational constant , and the spatial correlation of the noise field (,) has the typical form of a Newtonian potential. Similarly to other collapse models, the Diósi–Penrose model ...
The Oberth effect can be employed, particularly during a gravity assist operation. This effect is that use of a propulsion system works better at high speeds, and hence course changes are best done when close to a gravitating body; this can multiply the effective delta-v.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
Thus, gravity acts like a fictitious force such as the centrifugal force or the Coriolis force, which result from being in an accelerated reference frame; all fictitious forces are proportional to the inertial mass, just as gravity is. To effect the reconciliation of gravity and special relativity and to incorporate the equivalence principle ...
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
This also means the constraint forces do not add to the instantaneous power.) The time integral of this scalar equation yields work from the instantaneous power, and kinetic energy from the scalar product of acceleration with velocity. The fact that the work–energy principle eliminates the constraint forces underlies Lagrangian mechanics. [28]
The EFE can then be interpreted as a set of equations dictating how stress–energy–momentum determines the curvature of spacetime. These equations, together with the geodesic equation , [ 8 ] which dictates how freely falling matter moves through spacetime, form the core of the mathematical formulation of general relativity .