Search results
Results from the WOW.Com Content Network
The plateau created by modifying the proton beam is referred to as the spread out Bragg Peak, or SOBP, which allows the treatment to conform to not only larger tumors, but to more specific 3D shapes. [7] This can be achieved by using variable thickness attenuators like spinning wedges. [8]
Reflectivities for Laue and Bragg geometries, top and bottom, respectively, as evaluated by the dynamical theory of diffraction for the absorption-less case. The flat top of the peak in Bragg geometry is the so-called Darwin Plateau.
Bragg curve of 5.49 MeV alpha particles in air. This radiation is produced by the decay of radon (222 Rn); its range is 4.14 cm. Stopping power (which is essentially identical to LET) is plotted here versus path length; its peak is the "Bragg peak"
In order to achieve diffraction conditions, the sample under study must be precisely aligned. The contrast observed strongly depends on the exact position of the angular working point on the rocking curve of the sample, i.e. on the angular distance between the actual sample rotation position and the theoretical position of the Bragg peak.
Bragg curve of 5.49 MeV alpha particles in air. The force usually increases toward the end of range and reaches a maximum, the Bragg peak, shortly before the energy drops to zero. The curve that describes the force as function of the material depth is called the Bragg curve. This is of great practical importance for radiation therapy.
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Sir William Henry Bragg (2 July 1862 – 12 March 1942) was an English physicist, chemist, mathematician, and active sportsman who uniquely [1] shared a Nobel Prize with his son Lawrence Bragg – the 1915 Nobel Prize in Physics: "for their services in the analysis of crystal structure by means of X-rays". [2]