enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation. The gas constant is the constant of proportionality that relates the energy scale in physics to the temperature scale and the scale used for amount of substance.

  3. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    The state of an amount of gas is determined by its pressure, volume, and temperature. The modern form of the equation relates these simply in two main forms. The temperature used in the equation of state is an absolute temperature: the appropriate SI unit is the kelvin. [4]

  5. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): Here is the thermal expansion coefficient: is the isothermal compressibility (the inverse of the bulk modulus): and is the isentropic compressibility: A corresponding expression for the difference in specific heat capacities (intensive ...

  6. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    t. e. Maxwell–Boltzmann statistics can be used to derive the Maxwell–Boltzmann distribution of particle speeds in an ideal gas. Shown: distribution of speeds for 10 6 oxygen molecules at -100, 20, and 600 °C. In statistical mechanics, Maxwell–Boltzmann statistics describes the distribution of classical material particles over various ...

  7. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    R is the universal ideal gas constant: R = 8.314 462 618 153 24 J K −1 mol −1, T is the temperature in kelvins, z is the number of electrons transferred in the cell reaction or half-reaction, F is the Faraday constant, the magnitude of charge (in coulombs) per mole of electrons: F = 96 485.332 123 310 0184 C mol −1,

  8. Sackur–Tetrode equation - Wikipedia

    en.wikipedia.org/wiki/Sackur–Tetrode_equation

    The Sackur–Tetrode constant, written S 0 /R, is equal to S/k B N evaluated at a temperature of T = 1 kelvin, at standard pressure (100 kPa or 101.325 kPa, to be specified), for one mole of an ideal gas composed of particles of mass equal to the atomic mass constant (m u = 1.660 539 068 92 (52) × 10 −27 kg ‍ [5]).

  9. Thermodynamic limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_limit

    The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.