Search results
Results from the WOW.Com Content Network
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or R. It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per amount of substance, rather than energy per temperature increment per particle.
Van der Waals constants (data page) The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [1] To convert from to , multiply by 100. To convert from to , divide by 10. To convert from to , divide by 1000. a (L 2 bar/mol 2)
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
m = mass of each molecule (all molecules are identical in kinetic theory), γ (p) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_ {\text {B}}T/mc^ {2}} K2 is the modified Bessel function of the second kind.
R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1 ⋅mol −1 when pressure is expressed in pascals, volume in cubic meters, and absolute temperature in kelvin. The ideal gas law is an extension of experimentally discovered ...
Thermodynamic properties are defined as characteristic features of a system, capable of specifying the system's state. Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as Kf (the freezing point depression constant, or cryoscopic constant ...
The van der Waals equation, named for its originator, the Dutch physicist Johannes Diderik van der Waals, is an equation of state that extends the ideal gas law to include the non-zero size of gas molecules and the interactions between them (both of which depend on the specific substance). As a result the equation is able to model the liquid ...